Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Albina Castro-Méndez, ${ }^{\text {a* }}$ Jesús Sandoval-Ramírez ${ }^{\text {a }}$ and Sylvain Bernès ${ }^{\text {b }}$

${ }^{\text {a }}$ Centro de Investigación, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, AP 1742, 72000 Puebla, Pue.,
Mexico, and ${ }^{\mathbf{b}}$ Centro de Química, Instituto de Ciencias, Universidad Autónoma de Puebla, AP 1613, 72000 Puebla, Pue., Mexico

Correspondence e-mail:
sylvain@eros.pquim.unam.mx

Key indicators

Single-crystal X-ray study
$T=300 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
Disorder in main residue
R factor $=0.056$
$w R$ factor $=0.139$
Data-to-parameter ratio $=17.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

A derivative of diosgenin: (25R)-23-acetyl-3 β-bromo16β-acetoxy-22,26-epoxy-5 α-cholest-22-en-6-one

The crystal structure of the title compound, $\mathrm{C}_{31} \mathrm{H}_{45} \mathrm{BrO}_{5}$, has been determined at $0.80 \AA$ resolution. This study demonstrates that the Marker transformation applied to a diosgenin derivative does not affect the $A-D$ ring structure of the steroid. The configurations of the stereogenic centres C20 and C25 also remain unchanged during the reaction.

Comment

Diosgenin is an important member of the sapogenin family, especially due to the possibility of using this compound as a starting material for large-scale production of progesterone (Marker et al., 1940). Our group is currently working on the side-chain modification of diosgenin and related spirostanic compounds, using Lewis acids (Sandoval-Ramírez et al., 1999). During the course of this work, we prepared the title compound, (I), starting from a bromo derivative of a modified diosgenin previously reported (Coll-Manchado et al., 1998). Compound (I) can also be considered as a precursor for a new brassinosteroid class (Mitchell et al., 1970; Grove et al., 1979) and related steroids of biological interest.

(I)

As expected, the Marker transformation (see Experimental) afforded (I) with an unmodified $A-D$ steroidal nucleus, including trans A / B junction, and opened the E ring, providing the modified side chains (Fig. 1, and Tables 1 and 2). Position 16 of the D ring in (I) is substituted with an OAc group, while position 17 is substituted with a pyran ring containing an α, β unsaturated carbonyl group. The C22 atom of the spiroketal group, characteristic of the $E-F$ moiety in diosgenin, has changed its formal hybridization state from $s p^{3}$ to $s p^{2}$ and is clearly involved in the double bond $\mathrm{C} 22=\mathrm{C} 23$, with a distance of 1.345 (6) \AA. The position of the O atom in the pyran ring is clearly demonstrated by bond lengths C22-O26 and C26-

Received 19 April 2002
Accepted 29 April 2002 Online 11 May 2002

O26, of 1.365 (5) and 1.441 (5) \AA, respectively. This O atom is oriented towards the α face of the $A-D$ ring system.

The pyran ring adopts a twisted conformation, very similar to that observed for the two crystallographically characterized sapogenins with the same substitution at C16 and C17 (Sandoval-Ramírez et al., 1999). In the case of (25R)-23-acetyl-3 $\beta, 16 \beta$-diacetoxy-22,26-epoxy-cholesta-5,22-diene benzene solvate, a fit between the six-membered pyran ring of this compound and the pyran ring of (I) gives an r.m.s. deviation of $0.026 \AA$ (in order to properly compute this fit, the structure of the first molecule should be inverted, since the refinement was unfortunately carried out with the wrong absolute configuration). In the case of (25R)-23-acetyl-3 $\beta, 16 \beta$ -diacetoxy-22,26-epoxy-5 α-cholest-22-en-12-one diethyl ether solvate, reported in the same paper, the calculated r.m.s. deviation for the pyran rings is $0.023 \AA$. A comparison with compounds containing fused pyran rings also shows that the conformation is similar to that observed in (I). For instance, a fit with the pyran moiety of rhinacanthone (Kuwahara et al., 1995) affords an r.m.s. deviation of only $0.030 \AA$.

Finally, the presence of the heavy Br atom at the 3-position allowed the determination of the absolute configuration for the 11 chiral centres in (I). The refinement of the Flack (1983) parameter, $x=-0.008$ (12), determines unambiguously the following configurations: $3 S, 5 R, 8 R, 9 S, 10 R, 13 S, 14 S, 16 S$, $17 R, 20 S$ and $25 R$. The Marker reduction thus does not induce an inversion of configuration for the stereogenic centres at C20 and C25.

Experimental

Compound (I) was obtained from a modified Marker degradation. To $(25 R)$ - 3β-bromo- 5α-spirostan-6-one $(1.0 \mathrm{~g}, 2.026 \mathrm{mmol})$ was added 10 ml of acetic anhydride and 3 ml of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$. The mixture was stirred for 30 min and poured into cold water before extraction with ethyl acetate. The organic layer was washed with saturated aqueous NaHCO_{3} and then water. After removal of the solvent, the crude product was flash chromatographed on silica gel to give (I), which was crystallized from ethyl acetate (82% yield).

Crystal data

$\mathrm{C}_{31} \mathrm{H}_{45} \mathrm{BrO}_{5}$
$M_{r}=577.58$
Orthorhombic, $P_{2} 2_{1} 2_{1}$
$a=8.5963(11) \AA$
$b=12.4609(8) \AA$
$c=27.7642(15) \AA$
$V=2974.0(5) \AA^{3}$
$Z=4$
$D_{x}=1.290 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker $P 4$ diffractometer
$2 \theta / \omega$ scans
Absorption correction: ψ scan
$\quad(X S C A N S ;$ Fait, 1996 $)$
$\quad T_{\min }=0.528, T_{\max }=0.567$
7094 measured reflections
5918 independent reflections
3490 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\mathrm{int}}=0.038 \\
& \theta_{\max }=26.3^{\circ} \\
& h=-10 \rightarrow 9 \\
& k=-15 \rightarrow 1 \\
& l=-1 \rightarrow 34 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 97 \text { reflections }
\end{aligned}
$$

Refinement

Refinement on F^{2}
$(\Delta / \sigma)_{\max }=0.002$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.056$
$\Delta \rho_{\text {max }}=0.62 \mathrm{e} \AA^{-3}$
$w R\left(F^{2}\right)=0.139$
$S=1.01$
Extinction correction: SHELXL97
5918 reflections
345 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0489 P)^{2}\right.$
$+2.0696 P]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
Extinction coefficient: 0.0014 (5)
Absolute structure: Flack (1983); 2511 Friedel pairs
Flack parameter $=-0.008(12)$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

Br1-C3	1.966 (5)	C13-C18	1.533 (6)
O16-C30	1.311 (7)	C13-C17	1.552 (6)
O16-C16	1.463 (6)	C13-C14	1.563 (6)
O28-C28	1.206 (6)	C14-C15	1.520 (6)
C1-C2	1.533 (7)	C15-C16	1.519 (7)
C1-C10	1.547 (6)	C16-C17	1.553 (6)
C2-C3	1.500 (8)	C17-C20	1.528 (6)
C3-C4	1.516 (7)	C20-C22	1.515 (6)
C4-C5	1.529 (7)	C20-C21	1.542 (7)
C5-C6	1.500 (6)	C22-C23	1.345 (6)
C5-C10	1.543 (7)	C22-O26	1.365 (5)
C6-O6	1.215 (5)	C23-C28	1.479 (7)
C6-C7	1.491 (7)	C23-C24	1.513 (7)
C7-C8	1.531 (7)	C24-C25	1.510 (7)
C8-C14	1.509 (6)	C25-C26	1.483 (7)
C8-C9	1.557 (6)	C25-C27	1.505 (7)
C9-C11	1.538 (7)	C26-O26	1.441 (5)
C9-C10	1.541 (6)	C28-C29	1.514 (8)
C10-C19	1.536 (6)	C30-O30	1.21 (2)
C11-C12	1.541 (6)	C30-O30'	1.24 (2)
C12-C13	1.526 (6)	C30-C31	1.482 (9)
C30-O16-C16	117.0 (5)	C8-C14-C15	120.2 (4)
C2-C1-C10	114.0 (4)	C8-C14-C13	115.6 (4)
C3-C2-C1	111.5 (4)	C15-C14-C13	103.2 (4)
C2-C3-C4	111.1 (4)	C16-C15-C14	103.6 (4)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{Br} 1$	110.3 (3)	O16-C16-C15	111.4 (4)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{Br} 1$	111.1 (3)	O16-C16-C17	109.4 (3)
C3-C4-C5	107.9 (4)	C15-C16-C17	107.6 (4)
C6-C5-C4	113.7 (4)	C20-C17-C16	114.7 (4)
C6-C5-C10	110.6 (4)	C20-C17-C13	119.3 (3)
C4-C5-C10	114.9 (4)	C16-C17-C13	103.5 (3)
O6-C6-C7	122.8 (4)	C22-C20-C17	112.4 (4)
O6-C6-C5	122.5 (4)	C22-C20-C21	107.9 (4)
C7-C6-C5	114.7 (4)	C17-C20-C21	112.0 (4)
C6-C7-C8	114.2 (4)	C23-C22-O26	122.6 (4)
C14-C8-C7	111.3 (4)	C23-C22-C20	128.4 (4)
C14-C8-C9	107.9 (3)	O26-C22-C20	109.0 (4)
C7-C8-C9	111.1 (4)	C22-C23-C28	121.6 (5)
C11-C9-C10	115.5 (4)	C22-C23-C24	120.2 (4)
C11-C9-C8	108.7 (4)	C28-C23-C24	118.1 (5)
C10-C9-C8	113.5 (4)	C25-C24-C23	113.0 (4)
C19-C10-C9	111.9 (4)	C26-C25-C27	111.7 (4)
C19-C10-C5	110.5 (4)	C26-C25-C24	107.9 (4)
C9-C10-C5	107.6 (3)	C27-C25-C24	113.0 (4)
C19-C10-C1	110.6 (4)	O26-C26-C25	112.8 (4)
C9-C10-C1	108.9 (3)	C22-O26-C26	117.4 (4)
C5-C10-C1	107.3 (4)	O28-C28-C23	124.8 (5)
C9-C11-C12	113.1 (4)	O28-C28-C29	118.9 (5)
C13-C12-C11	112.2 (4)	C23-C28-C29	116.3 (5)
C12-C13-C18	110.3 (4)	O30-C30-O16	120.7 (15)
C12-C13-C17	117.1 (4)	$\mathrm{O} 30^{\prime}-\mathrm{C} 30-\mathrm{O} 16$	119.5 (11)
C18-C13-C17	110.6 (4)	O30-C30-C31	122.4 (13)
C12-C13-C14	107.5 (4)	$\mathrm{O} 30^{\prime}-\mathrm{C} 30-\mathrm{C} 31$	123.8 (11)
C18-C13-C14	111.8 (4)	O16-C30-C31	112.6 (7)
C17-C13-C14	99.0 (3)		

Figure 1
The structure of (I), with displacement ellipsoids at the 40% probability level. For clarity, H atoms and the minor disorder component have been omitted.

A minor disorder was detected for the carbonyl O atom of the OAc group on C16; this site was split into two components, O30 and O30', and refined with site-occupation factors of 0.54 (7) and 0.46 (7), respectively.

Data collection: XSCANS (Fait, 1996); cell refinement: XSCANS; data reduction: $X S C A N S$; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: RASTEP-threedimensional (Merritt \& Bacon, 1997); software used to prepare material for publication: SHELXL97.

SB is grateful to CQ-ICUAP (Puebla) for diffractometer time. ACM thanks CONACyT for studentship 112555.

References

Coll-Manchado, F., Iglesias Arteaga, M., Pérez Gil, R., Leliebre Lara, V. \& Pérez Martínez, C. (1998). Synth. Commun. 28, 75-81.
Fait, J. (1996). XSCANS Users Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Grove, M. D., Spencer, G. F., Rohwedder, W. K., Mandava, N., Worley, J. F., Warthen, J. D., Steffens, G. L., Flippen-Anderson, J. L. \& Cook, J. C. (1979). Nature (London), 281, 216-217.
Kuwahara, S., Awai, N., Kodama, O., Howie, R. A. \& Thomson, R. H. (1995). J. Nat. Prod. 58, 1455-9999.
Marker, R. E., Tsukamoto, T. \& Turner, D. L. (1940). J. Am. Chem. Soc. 62, 2525-2532.
Merritt, E. A. \& Bacon, D. (1997). J. Methods Enzym. 277, 505-524.
Mitchell, J. W., Mandava, N., Worley, J. F., Plimmer, J. R. \& Smith, M. V. (1970). Nature (London), 225, 1065-1066.
Sandoval-Ramírez, J., Castro-Méndez, A., Meza-Reyes, S., Reyes-Vázquez, F., Santillán, R. \& Farfán, N. (1999). Tetrahedron Lett. 49, 5143-5146.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

